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Peskin’s (J. Comput. Phys. 25, 220, 1977) immersed boundary technique is modified to give 
a new numerical method for studying a fluid with suspended elastic particles. As before, the 
presence of the suspended particles is transmitted to the fluid through a force density term in 
the fluid equations. As a result, one set of equations holds in the entire computational domain, 
eliminating the need to apply boundary conditions on the surface of suspended objects. The 
new method computes the force density by discretizing the stress-strain constitutive equations 
for an elastic solid on a grid, using data provided by clusters of Lagrangian points. This 
approach clearly specifies the material properties of the suspended objects. A simple data 
structure for the Lagrangian points makes it easy to model suspended solids with arbitrary 
shape and size. The method is validated by comparing numerical results for elastic vibrations 
and particle settling in viscous fluids, with theory and analysis. The capability of the method 
to do a wide range of problems is illustrated by qualitative results for lubrication and cavity 
flow problems. 0 1991 Academic Press, Inc. 

1. INTRODUCTION 

Flow of a liquid containing suspended, solid partidles is a common occurrence in 
natural and industrial processing environments. Examples are blood flow, transport 
of slurries, movement of sediments in a river bed, and ceramics and advanced com- 
posites manufacturing. Understanding the rheological properties of these materials 
poses a challenging theoretical and numerical problem, principally because of long- 
range, many-body hydrodynamic interactions between suspended particles. 

Most numerical methods for treating suspensions are restricted to Stokes’ flow. 
The review [ 1 ] summarizes use of a collocation method by Weinbaum and his 
coworkers. They calculate velocity and drag coefficients for a small number of rigid 
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spheres suspended in a fluid. A truncated expansion in eigenfunctions is made for 
the velocity in 3D, or the stream funcion in 2D axisymmetric Stokes’ flow, with 
boundary conditions imposed at 412 collocation points per sphere. Calculations 
include static determination of instantaneous velocity and drag on linear chains of 
spheres, and dynamic calculation of three sedimenting spheres. 

Brady’s Stokesian dynamics [2-g] is a molecular-dynamics-like approach to 
simulating the motion of hydrodynamically interacting, rigid particles at zero 
Reynolds number. Computation of the many-body interactions is achieved through 
construction of a mobility matrix that relates particle velocities to forces exerted on 
the fluid by the particles. The inverse matrix, the hydrodynamic resistance matrix, 
contains approximations to the far-field, many-body interactions. The near-field, 
lubrication forces are then added as contributions to this resistance matrix. 
Computation of the many-body interactions using the mobility matrix is an O(N3) 
operation, where N is the number of particles. This method has been used success- 
fully to study a wide range of problems, including calculation of sedimentation 
velocity, and permeability and shear viscosity of periodic cubic arrays of spheres, 
over a wide range of volume fractions. A similar method is used by Ladd [S-lo]; 
Ladd et al. [ 1 l] have also used the lattice-gas method to study suspensions. 

Ingber [ 12-131 and Tran-Cong & Phan-Thien [ 141 use the boundary element 
method for suspensions of rigid particles in Stokes’ flow. Since boundary elements 
are used to model particle geometry, particles can be any size or shape. This 
method is capable of providing highly accurate details of flows with suspended 
particles but is currently impractical for studying concentrated suspensions since 
it is computationally intensive. A comprehensive review which highlights the 
interconnections between the collocation method, boundary element method, and 
Stokesian dynamics is in Weinbaum [ 151. 

A straightforward application of finite difference methods or finite element 
methods to suspensions is also impractical for concentrated suspensions. A direct 
approach would involve solution of fluid equations in the irregular region external 
to the suspended particles and application of boundary conditions on the surface of 
each particle. Generating a mesh for this region is costly and frequent regridding 
would be required because of the particle motion. 

This paper describes a new numerical method for studying a bounded fluid con- 
taining suspended particles. It is based on Peskin’s [ 161 treatment of the heart wall, 
an immersed moving boundary, in his numerical study of fluid flow in the human 
heart. The crucial aspect of this method is the replacement of fluid-material inter- 
faces with suitable contributions to a force density term in the fluid equations. With 
this formulation, internal boundaries are eliminated and a simple, grid-based finite 
difference scheme is used to solve the fluid equations with an added inhomogeneous 
forcing term. Fogelson and Peskin [ 171 adapt this technique to simulate suspended 
particles. Particles are constructed by linking a small number of points, moving at 
the local fluid velocity, by elastic springs. The links between these points apply a 
force to cause the surrounding fluid to move as a rigid body. 

We also replace the suspended particles with a force density term in the fluid 



SUSPENSION FLOW 341 

equations; however, the force density is computed by discretizing the stress-strain 
constitutive equations for an elastic solid. This formulation has the advantage of 
making material properties of the suspended particles clear. It also eliminates the 
need to have points linked to one another, simplifying the data structure and 
problem setup. Particles of any size and shape are easily defined in the code. Since 
computational work involved in computing the force density is linear in the number 
of particles, this technique has the potential to handle a large number of particles. 

The next section describes the model equations, including details of the force 
calculation. Section 3 discusses the discretization of these equations, Section 4 
stability, and Section 5 presents numerical examples. In particular, we test the 
accuracy and stability of the model for an elastic solid, without the suspending 
fluid, by comparing numerical results with theory and analysis of elastic vibrations. 
In Stokes’ flow, the relationship between the force on a sphere and its settling 
velocity along the axis of a cylinder is computed and compared to theory. A similar 
comparison is made for a cylinder translating parallel to plane walls. The capability 
of the method to do a wide range of problems is illustrated by a qualitative study 
of lubrication forces and a cavity flow problem with suspended particles of varying 
shape. Although these numerical examples illustrate the method for Stokes’ flow 
with suspended elastic solids, this treatment of the suspended particles can be added 
to any finite difference scheme. A Navier-Stokes solver can be substituted for the 
Stokes solver in the current implementation; and, in principle, the suspending fluid 
may be non-Newtonian. In addition, any material can be modeled provided the 
constitutive equations are known; for example, the formulation can be extended to 
study plastic deformation. 

2. MODEL EQUATIONS 

We solve Stokes’ flow for an incompressible fluid: 

0 = -VP + p Au + f(x, t) (1) 

o=v*u. (2) 

These equations are to hold at each point x in the computational domain, including 
the interior of the suspended particles. The quantity u(x, t) is velocity, ~1 the 
viscosity, and p(x, t) the pressure. The inhomogeneous term f(x, t) is the sum of 
internal forces fint(x, t) and external forces fext(x, t). The external forces are 
problem dependent and can include gravity, or interparticle forces such as electrical 
or colloidal forces. The internal forces are those present in an elastic body and act, 
through the mediation of the fluid, to resist deformation of the suspended bodies. 
This force density is how the presence of the particles is transmitted to the fluid. 

The Ith suspended elastic body is constructed from a collection of points labelled 
xi(t). These points move at the local fluid velocity but are not constrained to 
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coincide with computational grid points. The local velocity is defined by averaging 
the fluid velocity over an appropriate neighborhood of x:,, 

dx’ 
--JJ= 

s dt v 
u(x, t) Y(x -- x;) dx. 

9’ is a weight function with compact support. The neighborhood is defined by the 
support of Y. If Y is a delta function then the velocity of XL is exactly the fluid 
velocity at that point. An average is used to define particle velocity since u is known 
numerically only at the vertices of a computational mesh. In the numerical method, 

9(x-xi, = c S”‘(X -XL) 6(x -x,), (4) 

where S(l) is bilinear interpolation (Appendix I), and the points x, are the vertices 
of the computational mesh. Using Eq. (4), the integral in Eq. (3) reduces to a sum 
over the grid points contained in the support of S (l) These points are the vertices . 
of the computational cell that contains xb. 

The term fint(x, t) is calculated from the elastic stress tensor 

f i”t(x, t) = V . o(Vd + (Vd)‘). (5) 

Here, d(x, t) is the displacement field. In incompressible flow V .d = 0. The shear 
modulus a(x, t) is a function of position because it is nonzero only within the 
elastic bodies. The shear modulus is treated as a particle property, that is xi has a 
value 0; associated with it. Values of c at other points are then delined via inter- 
polation 

0(x, t) = ; c apyx - XL), 
P3I 

where n(x, t) is the number of points p, in the support of 9, contributing to the 
shear modulus at x, counted by 

n(x, t) = CY(x -xi). 
P. 1 

(7) 

From a list of current particle positions x;(t) and equilibrium positions xh,,, 
particle displacements are computed 

d;(t) = x;(t) - x;~. (8) 

The particle displacements are then interpolated to give the center of mass displace- 
ment field, 

d(x, t) = c m;d;(t) cY(x - x;) 1 m;Y(x - x;), 
P31 i P. / 

(9) 
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where rn; is the particle mass for the Ith body. Derivatives of this field are used to 
form fint(x, t) using Eq. (5). The next section describes the scheme for discretizing 
these equations. 

3. DISCRETE EQUATIONS 

The difference equations described in this section are based on the finite volume 
approximations originally presented in Brackbill [ 161 and extended in Appendix II. 
The method uses a staggered mesh, with velocities and forces set at vertices of the 
mesh and pressure at cell centers. 

Equation (1) is solved by introducing an artificial time variable dt’ to march the 
solutions in time to a steady state, coupled with a projection method to enforce 
incompressibility, 

u*-u” 
==pL”(U,*)+f; 

At’ (10) 

(11) 

D,(ui) = 0. (12) 

A subscript u denotes a vertex quantity, and c a cell-centered quantity. The 
operators L,, G,, and D, are discrete Laplacian, gradient, and divergence 
operators. The superscript 0 indicates quantities evaluated at the beginning of the 
timestep and the superscript 1 at the end. Velocity values with an asterisk are inter- 
mediate values that do not satisfy the incompressibility constraint. Equations 
(ll)-( 12) project the intermediate velocity field onto one that is divergence free. 
These last two equations are solved by taking the divergence of Eq. (11) and 
making use of Eq. (12), to get obtain an equation for p: at cell-centers, 

$, D,(Q) = D&(d)) = L(d); (13) 

and rewriting Eq. (11) to obtain an equation for u: at vertices, 

u;=uv* -At‘ G&p;). (14) 

The discrete vertex-valued Laplacian L, appearing in Eq. (10) can also be written 
as L, - D,(G,( .,)), i.e., in terms of a vertex-valued divergence and cell-centered 
gradient. Note that the discrete gradient and divergence of a vertex variable are 
located at cell centers. Likewise, the discrete gradient and divergence of a cell- 
centered quantity are defined at the vertices. Formulas for D,, D,, G,, and G, are 
derived in Appendix II. As written, Eqs. (lo)-( 12) represent one step of an iteration 
to steady state. Values of u”, ul, u*, and p’ can be updated, keeping f” fixed, and 
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Eqs. (lo)-( 12) iterated, but we find in practice that one step suffices. For one step 
of the iteration, we can use At’= At, provided At satisfies the stability condition 
derived in the next section. 

For the two-dimensional calculations presented in Section 5, a computational 
cycle involves the solution of three Poisson equations, one for each velocity compo- 
nent and one for the pressure. The discrete Laplace operators are, in general, 
9-point operators. The resultant linear system of equations is solved with the 
preconditioned conjugate gradient method, the preconditioner being incomplete 
Cholesky decomposition. The implementation of this algorithm exploits the banded 
structure of the matrices and vectorization on the CRAY [19]. After ui is deter- 
mined, the particles are moved in this velocity field using Eqs. (3) and (4), 

x;(t + At) -x’(t) 
At 

p =py’(x”-xi). 
” 

(15) 

Particle displacements are then determined from Eq. (8), and displacements on the 
grid from Eq. (9) with x = x,. Using Eq. (5), the body force is 

ff’:’ = RW3AL) + G,(dJ=l>, (16) 

where (T, is obtained from Eq. (6) with x = x,. This completes the computational 
cycle. 

The key to this method is the smoothing of interfaces between solid and fluid, 
simplifying the imposition of boundary conditions. One set of equations holds in 
the entire computational domain and the need to resolve interfaces in order to 
apply boundary conditions is eliminated. Smoothing is accomplished using inter- 
polation as indicated above. Appendix I defines the spline-based interpolation func- 
tions used in the code. The numerical examples in Section 5 use a regular square 
grid, but the discrete operators are formulated more generally to allow for a grid 
of quadrilateral cells. Linear interpolation Y = S(‘) is used with vertex quantities II, 
(15), and d, (9), since this is consistent with the quadrilateral cells of the computa- 
tional mesh. Nearest grid point interpolation, Y = S(O), is used to calculate cr, in (6) 
and (7), so that cc is approximated to the same order as the other terms in the 
stress (i.e., G,(d,) and its transpose). 

In Stokes’ flow we expect small deformations of the elastic solid; however, dis- 
placements may be large since the body can rotate and translate in the fluid. In 
order to keep the displacement and displacement gradients small in each step, it is 
generally necessary to use body-fixed coordinates to calculate the displacement. 
Small displacements allow one to neglect the quadratic terms in the strain and 
maintain the validity of Eq. (5). The calculation for body-fixed coordinates is easily 
accommodated by moving the reference configuration along with the body. The 
reference positions xi0 are initially identical with the input particle positions x;(O). 
For each 1, the points x;,(t) move together as a rigid body, with the same mean 
translation and rotation as the positions x;(t). To simplify the notation, in the 
remainder of this section we drop the superscript I; the following calculation must 
be done for each 1. 
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The update for the reference positions is separated into two parts, 

~,~(t+dt)=x,,(t+dt)+r,,(t+dt), (17) 

where x,, is the position of the center of mass, and rPO = xPO - x,, is the position 
relative to the center of mass. The first term on the right-hand side of Eq. (17) is 
easy to compute; the new center of mass at time t + At is determined from the new 
particle positions 

x,,(f+dl)=~~m,x,(t+dl), (18) 
P 

where M= C, nzp is the total mass of the body. The second term on the right-hand 
side of Eq. (17) is more complicated, the derivation below is for two dimensions. 
The vectors rpO only undergo a rigid rotation. If this rotation is measured relative 
to the time-centered position P,,,= i(rp,,(f + At) + rpO(t)), then the change in the 
length of rp,, is zero, and 

r,,(t+dt)=r,,(t)+52x~,,, (19) 

where Q is a vector directed along the axis of rotation. To obtain an explicit expres- 
sion for rpO(f + At), take the vector product of Eq. (19) with 52 and substitute 
Q x r,,(t + At) back into Eq. (19): 

r ~t+At~~(1-(1/4)~2)rpo(t)+~xrpo(~) 
PO 1 + (l/4) 522 . (20) 

The update will be complete with the specification of the mean rotation, Q. The 
reference configuration rotates at the same mean rate as the particles xp relative to 
the vector f, = f (rp(t + At) + rp( t)), where r,(t) = xp( t) - x,,(t). The mean rotation 
is defined by the equation 

B 1 m,(F,)2 = c m,f2,(i;,)*. 
P P 

The new quantity 52, is the rotation of the vector r,(t + At) relative to Fp, 

Cl,= 
r,(t+df)x~, 

&J* . 

Therefore, the mean rotation is 

(21) 

(22) 

(23) L?= 
C, m,r,(t + At) x f, 

C, m,(f,)* ’ 
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With some algebraic manipulation, this last expression can be recast in the 
computationally more convenient form 

a=(l/4)C 
c, qJ,(t) x x,(t + AtI 

.m,[x,(t+dt)+r,(t)12- (l/4) x,.,(t+At)‘M’ (24) 

If the reference positions are not updated each timestep, d, in Eq. (8) is the total 
displacement from equilibrium; with the update, the mean motion has been 
subtracted and the displacements should be small. 

4. STABILITY 

To examine linear stability, consider a one-dimensional model problem based on 
Eqs. (lo), (15), and (8). Freeze the coefficients and assume a spatial variation of the 
form eikX, 

d-u0 
At 

- = -k2ad0- k$,l 

d’-do 
-= u’ 

At ’ 

This system of equations can be written 

(25) 

(26) 

(27) 

with a = k2a At/p and /I = k2p At/p. The eigenvalues of the amplification matrix are 
roots of 

A2-i(2+p-a At)+ 1 +B=O. (28) 

We next consider several special cases. The motion of an elastic material alone, 
without the background fluid, corresponds to p = 0 and results in a stability condi- 
tion, At < 2 m/k. On a grid with spacing Ax, the maximum possible wave 
number is k,,, = n/Ax; therefore, we expect a stability condition fi x At/Ax < 2. 
We demonstrate this condition in the next section. 

With viscosity present solutions are always damped if a = 0. If a #O, then 
At = p/a (b = GI At) yields a stable method for all wave numbers. This condition is 
also verified in practice. 

Nonlinear stability is studied from an energy equation. The equation of motion 
for an elastic solid alone, without fluid present, is 

p $ = fint. (29) 
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Equation (5) defines f int. So the kinetic energy X satisfies 

=u+V-a(Vd+Vd=) 

= V . a(Vd + Vd=) . u - $(Vd + Vd’) . (Vu + Vu=) 

=V.o(Vd+Vd=)+. (30) 

The quantity 9 is the elastic free energy, B = ae*, where e is the Cauchy strain 
tensor, e = i(Vd +Vd’). In deriving the energy equation, we use u = dd/dt and 
commute the time derivative and gradient operation, which is consistent with the 
neglect of quadratic terms in the strain. 

In the absence of work being done by the boundary, Eq. (30) shows that total 
energy is conserved in the continuum. The overall particle algorithm is dissipative. 
Dissipation of kinetic energy due to interpolation between particles and the grid is 
discussed in [20]. There is a similar error that should cause diffusion of strain 
because u # dd/dt in the model. The displacements are computed from (9) using the 
particle displacements (8). Combining Eqs. (9), (8), and (3), keeping xLO fixed, and 
noting that Y is a Lagrangian invariant, the difference between the velocity and 
time derivative of the displacement is 

4% f)-$j/(x’, t)Cm;(qx’-x) 
P3I 

- 9(x -XL)) 9(x - x;) c m;Y(x - x;) dx’. (31) 
9.1 

By analogy with the kinetic energy analysis, we expect this difference to cause dis- 
sipation of the elasitic potential energy but we have been unable to prove this 
analytically. The numerical results in the next section give evidence of dissipation. 

In calculations of an elastic solid suspended in a creeping fluid, there is additional 
viscous dissipation. Using Eqs. (1) and (2), the energy equation in the continuum 
is 

d9 
dt=V.a(Vd+VdT).u-V.(up)-@, (32) 

where @ is the rate of viscous dissipation. In these calculations the extra dissipation 
due to diffusion of the strain introduced by the particle algorithm is not as impor- 
tant. 
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5. NUMERICAL EXAMPLES 

In this section results of simulations are presented. One set of simulations is 
qualitative, chosen to illustrate features of the numerical method. The second set of 
simulations provides a quantitative validation of the method. All of the calculations 
are two-dimensional, using either Cartesian coordinates or axisymmetric, cylindri- 
cal coordinates. 

5.1. Deformation of an Elastic Body 

To test the properties of the model for an elastic solid, several calculations are 
performed without a background fluid. A circular cylinder is deformed and then 
allowed to relax. The calculated response is examined to test linear stability, non- 
linear stability, and accuracy. First, the cylinder is deformed by a uniform compres- 
sion, the initial deformation d = -O.O5rf, is shown in Fig. 1. The particles defining 
the cylinder, and the grid on which Eqs. (29), (5), and (15) are solved, are shown 
in Fig. 2a. The initial forces acting on the particles are shown in Fig. 3. The subse- 
quent motion is summarized in Fig. 4, where kinetic energy elastic potential energy, 
and the total energy are plotted. The final particle configuration is shown in Fig. 2b. 
The final configuration exhibits the same regular distribution of particles as the 
initial configuration. 

Two features of the results are noteworthy. First, the total energy, shown in 
Fig. 4, decreases in time, as expected from the energy analysis in the last section. 
(The superimposed oscillation is due to the explicit time advancement algorithm.) 

FIG. 1. The particles are displaced from equilibrium to excite an elastic vibration. The displacement 
vectors point from the reference positions to the displaced particle positions. 
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a 

FIG. 2. Particles define the cylinder in Fig. 1, and interactions among particles are computed on a 
grid. The initial configuration is in (a), and the configuration after five periods is in (b). 

Second, the frequency of the oscillation can be compared with an exact solution. 
For a cylinder with radius R, the density and elasticity are pO and oO for r < R, and 
zero for r > R. Solving the equation of motion for d using a Fourier-Bessel expan- 
sion of the solution yields the dominant frequency 

W= -- (33) 
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FIG. 3. The initial elastic forces acting on the compressed cylinder act to restore it to its original 
shape. 

1 
10.0 

FIG. 4. The kinetic (solid curve), elastic potential (dashed curve), and total (chained curve) energy 
histories reflect the elastic vibration of the cylinder, and the dissipation due to discretization of the 
equations. 
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For the problem shown in Figs. 1-4, R =0.6, 00/po=0.5, and o = 2rc/2.048. The 
computed value is w,,,~ = 27r/2.05. 

Stability is tested next. The timestep used above, At = 0.04, is less than the maxi- 
mum stable step size predicted by the linear analysis, At,,, = 0.072. With At = 0.09, 
the energy increases with time and the particles become distorted as shown in 
Fig. 5. 

If the deformation is initially incompressible, say 

d(x, 0) = V x $(x)2, (34) 

0 d 
0.0 2.0 4.0 8.0 8.0 10.0. 

TIME 

FIG. 5. In an unstable calculation, Af = 0.09, short wavelength distortions of the particles and the 
total energy grow in time. 

581/96/2-8 
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FIG. 6. The particle displacements from equilibrium excite an incompressible, elastic vibration. 

0.0 i.0 i-0 i.0 6.0 
t 

1 
10.0 

FIG. 7. The total energy (chained curve) for incompressible elastic vibrations decays due to numeri- 
cal dissipation. The kinetic energy (solid curve) and potential energy (dashed curve) oscillate at a 
slightly lower frequency than in Fig. 4. 
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with 
t)(x) = A sin k(x - x,) sin k(y - y,), (35) 

where (x,, y,) is the center of the cylinder, the initial displacement shown in Fig. 6, 
causes an oscillation to occur at a slightly lower frequency than the compressive 
case. The initial displacement is small enough that the free boundary does not 
generate an appreciable compressive component over the duration of the calcula- 
tion. The oscillation frequency remains constant, and the total energy decreases 
as in the compressive case, although the frequency of oscillation is slightly 
different, Fig. 7. 

5.2. Sedimentation 

In axisymmetric, cylindrical coordinates we calculate the motion of a sphere of 
radius a settling along the axis of a cylinder of radius R, under the influence of 
gravity, through a quiescent fluid. Figure 8 shows a sample computation for 
ajR = 0.3, R = 1.0, and H = 2.0, where H is the height of the cylinder. The phase 
velocity for elastic shear waves is fi in the units used for this computation. 
Figures 8a and b show particle plots superimposed on streamlines for two different 
times, t = 5.0 and t = 15. Figure 8c shows contour lines of the shear modulus, (T, at 
time t = 5.0, illustrating the smooth interface between the fluid and the suspended 
solid. 

Figure 8d is a plot of the position of the center of mass as a function of time. The 
effect of the finite sized domain is to decrease the settling velocity of the sphere near 
the top and bottom walls relative to its velocity in the center of the cylinder. At the 
end of the calculation, the cylinder has essentially come to rest, but a thin layer of 
fluid still remains between the sphere and the bottom wall. No-slip conditions on 
solid boundaries for the velocity do not allow fluid to flow through the boundary. 
Since the velocity field is single valued and particles move in this field, particles also 
do not penetrate solid boundaries. 

For a sphere settling along the axis of an infinite cylinder, Faxen [21] has an 
asymptotic theory for small a/R that predicts the wall correction factor, K. The wall 
correction factor is the ratio of the drag on the sphere in the cylinder to the drag 
on a sphere moving with the same velocity in an unbounded fluid. Numerically, the 
wall correction factor is computed by applying a constant force to the sphere and 
calculating its settling velocity, the velocity of its center of mass. If the velocity is 
measured in the center of a cylinder with finite height, the effect of the top and bot- 
tom boundaries is mitigated and the computed results should agree with Faxen’s 
theory. Table I compares computed values of the wall correction factor and Faxen’s 
theoretically predicted values, for different sized spheres. The error is smallest for 
small a/R and is worst for the largest value of a/R; however, the asymptotic theory 
breaks down as a/R increases. The error is also smaller when the sphere is resolved 
better on the grid, measured by a/Ax. Using the boundary element method, Ingber 
[ 131 reports errors increasing in magnitude with a/R, up to a -5.4% error with 
a/R = 0.5. 
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b 

0 
ni 1 d 

0.0 5.0 10.0 15.0 20.0 25.0 
t 

FIG. 8. The particles defining a sphere settling along an axis of symmetry in a cylinder of height 2.0 
are shown at t = 5.0 (a) and t = 15.0 (b). The corresponding straemlines are superimposed. In (c) 
contours of the shear modulus (r show the smooth interface between the fluid and solid. The center of 
mass position, shown in (d), reflects the decrease in settling velocity due to the ends of the cylinder. 

alR 

0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.40 
0.50 

TABLE I 

Settling Sphere on a 51 x 101 Mesh, R = 2.0, with 9 Particles/Cell 

a/Ax Number of particles K theory K computed % error 

2.5 86 1.12 1.17 4.4 
5.0 358 1.26 1.29 2.2 
7.5 788 1.45 1.53 5.3 

10.0 1414 1.68 1.71 1.8 
12.5 2202 1.98 2.02 2.0 
15.0 3188 2.37 2.37 
20.0 5652 3.59 3.49 -2.9 
25.0 8846 5.92 5.16 - 12.9 
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TABLE II 

Settling Sphere, Convergence Study with a/R = 0.2, R = 2.0, and 9 Particles/Cell 

ajdx Mesh size Number of particles K theory K computed % error 

10.0 51 x 101 1414 1.68 1.71 1.8 
5.0 26x51 358 1.68 1.73 2.7 
2.5 13x26 90 1.68 1.87 11.4 

In our model, the size of the suspended sphere cannot be determined precisely, 
the error is on the order of the size of a computational cell. This indeterminancy 
arises even though particles are input to fill a region with a given radius. The 
influence of the particles is felt in a larger region since the support of the interpola- 
tion function is a computational cell. The input radius is used to make the com- 
parison with theory. As the mesh is relined, the surface of the sphere is located more 
precisely, consistent with the use of a finite difference method. Table II shows the 
computed wall correction factor as the mesh is refined, u/Ax is increased with 
u/R = 0.2 fixed. Several computational cells must be contained within the sphere to 
compute accurately its settling velocity. In contrast, Table III indicates that the 
results are not sensitive to the number of particles used to represent the sphere. 

Discrepancies between the theory and numerical calculations may be due to 
sources other than numerical truncation error. These include the fact that the 
theory pertains to an infinite cylinder and the computations are made on a finite 
domain and also that the sphere is not completely rigid. As a test, doubling the 
height of the cylinder in one case (a/R = 0.3) does not change the settling velocity. 
Since the sphere does not deform appreciably while it settles, this probably has litlle 
impact on the settling velocity. 

Faxen [21] also has an asymptotic formula for the force per unit length on an 
infinite cylinder translating parallel to the channel formed by two infinite plates. 
The velocity of the cylinder is directed perpendicular to its axis. This theory is com- 
pared to calculations in Cartesian coordinates using a channel width 2L = 2.0 and 
height H = 6.0, for cylinders with varying radius. A constant force F is applied to 
the cylinder, and the velocity of its center of mass, U, is computed. The dimen- 
sionless force per unit length F/pU is compared to Faxen’s theory in Table IV. 

alR a/Ax 

0.2 5 
0.2 5 
0.2 5 

TABLE III 

Variation of Settling Velocity of a Sphere with 
the Number of Particles, on a 26 x 5 1 Grid and R = 2.0 

Number of particles Particles per cell K theory K computed % error 

358 9 1.68 1.73 2.7 
158 4 1.68 1.73 2.7 

40 1 1.68 1.60 -4.7 
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TABLE IV 

Force on a Settling Cylinder Computed on a 26 x 76 Mesh with 9 Particles/Cell 

OIL a/Ax 

0.10 2.5 

0.20 5.0 
0.30 I.5 
0.40 10.0 

Number of particles 

90 
349 

197 
1410 

Faxen UP u % error Dvinsky and Pope1 

8.95 9.11 1.8 

16.53 16.96 2.6 17.47 
29.27 29.03 -0.8 30.22 

54.12 48.13 - 10.5 53.72 

Errors are small for small a/L, where the asymptotic theory applies best. The 
decrease in error with increased resolution of the cylinder (increased a/Ax) is again 
apparent. Dvinsky and Pope1 [22] calculate the force on a cylinder using 
curvilinear, boundary-conforming coordinates. Their results are also shown in 
Table IV for comparison. 

a 

I 
i I 

d 

FIG. 9. Elastic objects of various shapes circulate in a driven cavity flow. They are shown in (at(d) 
with streamlines superimposed, after 2.5, 5.0, 7.5, and 10.0 fluid transit times across the top boundary. 
The objects deform in the high shear region near the top boundary and restore in the low shear flow 
in the center. The interaction of the immersed objects with the fluid alters the flow. 
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5.3. Cavity Flow 

The numerical method developed here can be used to study rheological proper- 
ties of suspensions made up of particles having different material properties, shapes, 
and sizes. As an example, Fig. 9 shows a driven cavity flow, the top boundary 
moving with unit velocity. The calculation is made in a square domain, with no-slip 
boundary conditions on all sides, using Cartesian coordinates. The phase velocity 
for elastic shear waves is ,,/%. The cavity contains suspended objects with varying 
shape. The initial shapes are easily defined by tilling regions with particles, 
specifying the average number of particles per computational cell. As the simulation 
proceeds, solids move into the high shear region near the top, undergo a deforma- 
tion, and then relax back to their initial shape as they circulate around to the low 
shear region. The figure shows particle positions superimposed on streamlines. 

I- 

b iiiiiiii :::::::: :::::::: :::::::: :::::::: :::::::: :::::::: :::::::: 2:::;;: :::::::: :::::::: 

d 

. . . . . .  
. : : : : : : : : : : .  

: : : : : : : : : : : : : :  
. . . .  : : : : : : : : : : : : : : : :  . .  . . . . . . . . . . . . . . . . . . . . . . . . . .  

y : : : : : : : : : : : : : .  
‘:if;;X;;;;i:’ 

. . . . . . . . . . . . . . . . . . . . .  

. . . . . .  .  .  .  .  
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. .  
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: :  . .  

FIG. 10. The reference configurations in (ah(d) corresponding to the simulation shown in Fig. 9. 
The reference configurations translate and rotate at the same mean rate as the suspended solids. The 
difference between the particle positions and the reference configuration is used to compute the elastic 
restoring force. 
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Notice that the interaction of the immersed solids with the fluid distorts the basic 
flow. 

The corresponding reference configurations are shown in Fig. 10; these do not 
deform but translate and rotate at the same mean rate as the suspended solids. The 
difference between particle positions and the reference configuration is used to com- 
pute the particle displacements, and subsequently the displacement field and elastic 
restoring force. The use of body-fixed coordinates allows computations that include 
large rigid body motions of the suspended solids. 

5.4. Lubrication Forces 

Near-field lubrication forces are inherently contained in the model equations. 
This feature makes study of particle interactions tractable. As an illustration, in 
Fig. 11 the fluid is being squeezed out as two cylinders approach each other. The 

FIG. 11. A constant force is applied to cylinders, driving them together. The particles and streamlines 
are shown at times t=O.O, 5.0, 10.0, and 16.0 in (a)-(d). Lubrication forces keep the cylinders from 
coming together. 
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I! , , , , , , , 
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 

t 

FIG. 12. Center of mass trajectories for the cylinders in the simulation shown in Fig. 11 are plotted. 
The decrease in velocity as the cylinders approach is in qualitative agreement with lubrication theory. 

cylinders have radius 0.2 and are in a square box with side length 2.0. The motion 
is due to a constant force applied to each cylinder. Since the velocity field is single 
valued, and the particles move in this field, particles do not interpenetrate. The 
reference configurations (not shown) appear to touch at the end of the calculation. 
In contrast, the actual elastic solids have started to deform and there is still a thin 
layer of fluid between them. Figure 12 shows the trajectories of the center of mass 
of each object. The decrease in velocity as the cylinders approach is in qualitative 
agreement with the decrease in gap width predicted by lubrication theory. 

6. DISCUSSION 

An extension of Peskin’s immersed boundary technique [16] is used to develop 
model equations for a fluid containing suspended elastic particles. The presence of 
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the suspended particles is transmitted to the fluid by adding an appropriately con- 
structed inhomogeneous forcing term to the fluid equations. As a result, one set of 
equations holds in the entire computational domain where they are solved using a 
grid-based finite difference method. This formulation gives up exact knowledge of 
the surface location to reduce the cost of exactly applying the boundary conditions 
on a suspended body, a trade-off consistent with the use of a finite difference 
method. 

The extra inhomogeneous forcing term is computed using Lagrangian fluid par- 
ticles to track the position of the suspended solid. Particle displacements are easy 
to compute, and from them a displacement field is easily calculated by interpolating 
the particle data to a computational grid. The added force density term is computed 
from this displacement field, using the stress-strain constitutive equations for an 
elastic solid. The computational work involved in computing the force density is 
linear in the number of particles. In two dimensions, the computation time per 
particle, per timestep is 33 ps on a CRAY Y-MP. 

The validity of the model is tested by studying the elastic equations without a 
background fluid, and by inserting the force calculation into a fluid code that solves 
Stokes’ equations in two dimensions. A favorable comparison with theory is made 
for the elastic response to deformation of a cylinder and for the settling velocity of 
a particle in a viscous fluid. The capability of the method to do a wide range of 
problems is illustrated by a qualitative study of lubrication and cavity flow 
problems. 

Two shortcomings of the present formulation need to be addressed. The numeri- 
cal results in the last section indicate that several computational zones must be con- 
tained within each suspended object for accuracy. Improvements in both accuracy 
and efftciency can be realized by using an adaptive grid [23]. Increasing the grid 
resolution only near the suspended particles may allow sufficient savings to study 
highly concentrated suspensions. The general formulation of the discrete operators, 
in terms of a table of geometric coefficients as presented in Appendix II, sets up the 
future exploration of this area. 

In addition, the current formulation evaluates the force density term explicitly. As 
in Peskin [16], we observe this explicit evaluation is unstable for large timesteps. 
From a linear stability analysis, and in practice, a timestep of At = P/O yields a 
stable scheme. An implicit scheme would eliminate this restriction. Alternatively, 
Peskin’s [16] semi-implicit method may be sufficient to alleviate the problem and 
allow modelling of rigid particles. 

Most problems in suspension rheology are inherently three-dimensional. The 
success of the two-dimensional tests presented here, shows the promise of this 
technique for studying fully three-dimensional phenomena. Coupled with an 
adaptive grid and an implicit evaluation of the force density, this method has the 
potential to handle concentrated suspensions. 
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APPENDIX I 

This appendix defines the interpolation rules used in the numerical code, 
CLUSTER. Even though the numerical examples presented in Section 5 use a 
regular square grid, the numerical code is implemented to allow for a general mesh 
of convex quadrilateral cells, as in Brackbill and Ruppel [24]. Let xLi, xi+ ,,j, 
xi+l,j+13 xi,j+l denote the vertices of computational cell (i, j). If we introduce 
natural coordinates (<r, t2) which assume integer values at the vertices, then, using 
bilinear interpolation, any point x in the cell is given by 

x=5;C(1-t;!2)xi+I,j +~~xi+l,j+11+(1-5~)C(1-~~)xi,j+~~xi,j+ll (I.l) 

with & = l1 - i and 5; = <*-j (0~ &, 5; < 1). This mapping from natural to 
physical coordinates can also be written 

x=Cx,d’)(t1-i,t2-j) (I.21 

(1-15;1)(1-l~;I), s”‘(4;, a={, oGlt;I, IGIG 9 otherwise 

The function so) is positive, continuous, has compact support, and has range 
[0, 11. It is normalized so that integrating over the domain gives 

I s(‘)&( = 1 and ~s”‘(~1-i,~2-j)=1. 
D i,J 

A corresponding interpolation function in physical coordinates is 

(1.3) 

S(“(x(51, 52))=s’1Y41-i, t2-j), (1.4) 

with jy S”‘J-’ = 1, where J= a(x, ~)/a(<,, t2) and I’ is the physical domain. On 
a square lattice, 

s”‘(x, y) = Cl- Ixllh)(l - IYM), 0~ I-4, IYI Gh o 
9 otherwise ’ 

and J= h2. In general, the support of S(‘)(x) depends on x, but for a square lattice 
the support is h, the grid spacing. 

Bilinear interpolation is used to project all particle data onto the computational 
grid, except the shear modulus, where nearest grid point interpolation is used. 
When applied to a cell-centered quantity, this interpolation rule projects a particle 
property onto the cell containing the particle. The logical coordinates of a cell are 
(i + 4, j+ $), so in logical variables 

O~Ir,-i-fl,Ir,-j-Il<~ 
otherwise 
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The corresponding function S”’ in physical variables is defined in the same way as 
bilinear interpolation. 

The same interpolation is used for axisymmetric calculations in cylindrical 
coordinates, where x has components (Y, z) instead of (x, y). 

APPENDIX II 

Formulas for discrete approximations to derivatives in the code, CLUSTER, are 
derived in this appendix. Since the derivation applies equally well to two- or three- 
dimensional grids, we present it for three dimensions. Finite volume approxima- 
tions are used on a staggered grid. Velocity, displacement, and forces are associated 
with vertices of cells; and pressure and elasticity are stored at cell centers. In 
general, the grid is made up of convex cells that are the image of a unit cube under 
the obvious generalizaion of the map described in Appendix I. This formulation 
allows the flexibility of using a fixed grid, a Lagrangian grid whose vertices move 
with the fluid, or an adaptive grid that moves in a prescribed manner. The advan- 
tage of this formulation on a rectilinear grid is the ease with which any formula can 
be discretized, using a table of coefficients to form derivatives. The same code is 
used to solve problems in Cartesian and cylindrical coordinates, the switch only 
involves generating the appropriate table of coefficients. 

A derivative of a vertex variable results in a cell-centered quantity and is 
calculated as an average over the cell. For a velocity component u,, the average of 
the derivative with respect to the coordinate xs is 

(11.1) 

The cell volume is computed from 

Vc=s dV=J Jd3[, (11.2) 
vc c 

where J is the Jacobian of the map from logical to physical coordinates, and C is 
the unit cube. This map is defined in Appendix I for two dimensions and is easily 
extended to three. 

To evaluate Eq. (11.1) in terms of data on the computational grid, define u 
throughout the cell from its values at the vertices 

u(x, 2) = 1 u,s”‘(x - X”). (11.3) 

The sum is over all vertices, but only those vertices in the support of S(l) make a 
non-zero contribution; these are the vertices of the cell containing x. Now Eq. (11.1) 
becomes 
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where 

(z$),=$f, ” c (4” & s”‘(x - X”) dV 
= c (4” qL (II.4 

” 

) CC” = 
3 s Ls”‘(x-x”)dv. 

vc axs 
(II.5 

Derivatives of the displacement field are defined analogously. 
It is useful to form a vector of geometric coefficients cc” = (CT). One can now 

combine derivatives to form a discrete divergence operator, acting on vertex quan- 
tities and defined at a cell center, 

VJ,(U”) = J, v . u dV= c U” *CC”. (11.6) 
” 

In the same way, derivatives are combined to form a discrete gradient operator 
defined at a cell center, 

?‘cG,(u,) = j,Vu dJ’= c cC”u”. 
” 

Note that from the expression for cell volume (11.2) it can be shown that 
cc” = av,/ax”. So, on a Lagrangian grid, the divergence satisfies the continuity 
equation 

(11.8) 

Formulas for the divergence and gradient, acting on cell-centered data and 
located at vertices, are now constructed to satisfy a discrete form of the divergence 
theorem 

s #w.ndS= j-J+WJ’=jQ I, w.Vd+ @.wdV. (11.9) 
SR 

This property is essential for the projection method described in Section 3. For 
example, to form the gradient of the pressure, which is stored at cell centers, apply 
Eq. (11.9) with 4 = p and w = u and let Q be a union of computational cells. An 
approximation for the last term in Eq. (11.9) is already defined 

1 PcDr(Uv) vc= c PE~CC”~U”~ CER CER ” (11.10) 
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At this point, postulate a form for the gradient at a vertex analogous to Eq. (11.7) 

V,.G,.(p,.) = c Pp,, (11.11) 

for some coefficients 5”‘. The quantity V, is a control volume centered at a vertex 
x,, V, = $ Cc V,,. The sum is over the cells that have x, as a vertex. Combining 
Eqs. (11.9)-( II. 11) gives 

s pu.ndSz c ~~.~(C(‘“+c(‘“)p,,. (11.12) 
SR “ER < 

The left-hand side of Eq. (11.12) is a surface integral, so the right-hand side should 
only involve vertices on the boundary of 52. Since u and p are arbitrary, for an inte- 
rior cell c we need P” = -cc”. We now have the required formula, 

V,G,(p,) = -c ccvpp,.. (11.13) 

To obtain the formula for the divergence at a vertex, the process is similar. Start 
with Eq. (11.9), but now let w be defined at cell centers, let 4 be a vertex quantity, 
and let Q be a union of vertex-centered control volumes. Use Eq. (11.7) to define an 
approximation to the first term on the right-hand side of Eq. (11.9), and proceed as 
above to obtain 

V”D”(WC) = -c CC”. w,. (11.14) 

The discrete version of the Laplacian is defined by combining the divergence and 
gradient operators. There are two forms of the Laplacian, one operating on vertex 
data and one on cell data. 

V&,(u,) = V,D,(G,(u,)) = -Cc” .C u,~cc”‘/Vc 
c v’ 

VJAP,) = V,D,(G,(p,)) = -1 cc” .I p,~c”‘“lK. 
” c’ 

(11.15) 

(11.16) 

The linear systems of equations that arise from these discretizations of the 
Laplacian, when multiplied by a volume, are symmetric and negative definite. On 
an arbitrary quadrilateral mesh the discrete Laplacians have a 9-point stencil. 

All derivatives are now defined in terms of one set of geometric coefficients, cc’. 
The geometric coefficients are easily computed from the definition of S(l) (Brackbill 
[ 183). For each cell, we store a value of the vector cc” for each of the vertices of 
the cell. To illustrate these formulas, Table V gives the geometric coefficients for a 
square lattice in two dimensions. The discretization reduces to the box scheme for 
the gradient and divergence operators. The Laplacian on a square grid has a 
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TABLE V 

Geometric Coefficients for 
a Square Grid in 
Two Dimensions 

1 h/2 -h/2 
2 h/2 h/2 
3 -h/2 h/2 
4 -h/2 -h/2 

Note. For cell c, the vertices 
are numbered counterclockwise 
starting from the lower right. On a 
square grid, V,. = V, = h2. 

5-point stencil; the central point is coupled to the four corners. Properties of the 
coefficients are discussed in Brackbill [25]. 

Some of the computations in Section 5 are made in axisymmetric cylindrical 
coordinates. We end the section with a description of the discretization used in this 
case. The vector x now has components (r, z) and control volumes are solids of 
revolution formed by rotating a quadrilateral cell about the z-axis. The quadri- 
lateral cross-section is the image of a unit square in logical space, under the map 
defined in Appendix I. The volume of a cell (per radian) is now 

(11.17) 

where J= a(r, z)/a(<r, <J and C is the unit square. 
For a quantity $, located at vertices of the mesh, finite volume approximations 

to derivatives are defined as before, 

E 
=Ivc$dV=jvc$rdrdz 

SC 
a = $” - S(‘)(x -x,) r dr dz 

vc ” ar 

and 

r dr dz = 
SE vc ” 

$u~S(l’(x-x,,)rdrdz 

(11.18) 

(11.19) 
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In cylindrical coordinates, we also need 

v, 
$drdz=s -&bJ”‘(x-x,)drdz 

vc ” 

= c *,:c:‘y. 
t’ 

The geometric coefficients are 

(11.20) 

“:Y= s 2S”‘(x-x,)rdrdz, 
v, ar 

(11.21) 

cc0 = 
‘2 s 

S”‘(x -x,) dr dz, (11.22) 
K 

y” - z- s v< 
gS”‘(x-x,)rdrdz. 

The coefficient cz: results from the variation of the basis vectors with position. 
It is notationally convenient to form two vectors from these geometric coef- 

ficients, c$ = (cfp, 0, cf”) and cy = (c:y + c;;, 0, cf”). Since 

+!!!?+g and V$=($,O,g), (11.24) 

discrete divergence and gradient operators at cell centers are written as 

VCDC(U”) = 1 CI” . U” (11.25) 

VcGc(ll/J = 1 cf”$u. (11.26) 
” 

Paralleling the presentation for Cartesian coordinates, the divergence and gradient 
at a vertex are designed to satisfy Eq. (11.9), 

V”D”(W,) = -1 CF” . w, (11.27) 

J’,GAP,) = -1 G”P~. (11.28) 

For scalar quantities, discrete versions of the Laplacian are defined by combining 
the divergence and gradient operators as before, 

VJ,(P,) = vcD,(G,(~c)) = -Cc;” .C c;‘“PJK 
” c’ 

VuL($d = V,D,(G,($,)) = -1 cE” .C +IW’,. 
c 0’ 

(11.29) 

(11.30) 
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The Laplacian of a vector must take into account the spatial variation of the basis 
vectors. For a vector defined at the vertices of the mesh, like II,, the Laplacian of 
the z-component satisfies Eq. (11.30). The Laplacian of the r-component of a vector 
is 

a i aru a% 
ar Far +az'. ( > 

(11.31) 

To get an appropriate discretization of Eq. (11.31), observe that by construction, the 
component derivatives of a vertex quantity are given by Eqs. (11.18t(II.20). Equa- 
tions (11.27)-(11.28) show how to define component derivatives at a vertex from 
cell-centered data, 

v ” ( > y$ “+cfyc IJ 
V” E “=c-c;*c ( > ” 
V” s “=I qfL ( > ” 

(11.33) 

(11.34) 

Note that in addition to the sign change, the roles of I$” and cy are reversed; at 
a vertex cf” contains the contribution from the spatial variation of the basis vectors. 
Therefore, a discretization of Eq. (11.31) is formed as 

V”Z,(U”) = -1 cp .I cy’u”~/v,. (11.35) 
c v’ 

All of the quantities needed for Eqs. (lo)-(12) are now defined in cylindrical 
coordinates except f,. To discretize the force rewrite Eq. (5), 

P’=2V~aVd+Vx0Vxd. (11.36) 

The first term on the right-hand side of Eq. (11.36) is handled in the same way as 
the Laplacian of a vector 

-C~p.a~CcS”‘d,,.lV=,O,--ccfU.a,CcEU’d,,./V, , (11.37) 
E u’ c 0’ > 

where (d,, 0, d,) are the components of d. The second term requires a definition for 
the curl. From 

define 

(11.38) 

V,(V x d), = 1 cf” x d,. (11.39) 

581/96/2-9 
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Then, since 

Vxa(Vxd)= -;(Sxd)f+;-&cA7xd)i, (11.40) 

the second term of Eq. (11.36) is discretized using 

V,(V x a(Vx d)),, = -1 cp x oC C CT”’ x d,r/V,.. (11.41) 
< 0’ 

This completes the description of the discretization in cylindrical coordinates. 
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